
  

Vowpal Wabbit
(fast & scalable machine-learning)
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“It's how Elmer Fudd would pronounce
 Vorpal Rabbit”



  

What is Machine Learning?

In a nutshell:
      - The process of a computer (self) learning from data

Two types of learning:
 Supervised:      learning from labeled (answered) examples 
 Unsupervised:   no labels,  e.g. clustering, segmentation



  

Supervised Machine Learning

y  =  f (x1, x2, … , xN)

        y :                   output/result we're interested in

        X1, … , xN :    inputs we know/have



  

Supervised Machine Learning

y  =  f (x1, x2, … , xN)

Classic/traditional computer science:
 We have:      x1, … , xN    (the input)

 We want:      y   (the output)

We spend a lot of time and effort thinking and coding   f
We call   f  “the algorithm”



  

Supervised Machine Learning

y  =  f (x1, x2, … , xN)

In more modern / AI-ish computer science:
  We have:    x1, … , xN
  We have:    y 

We have a lot of past data, i.e. many instances (examples)    
of the relation  y  =  f (x1, …, xN)    between input and output



  

Supervised Machine Learning

y  =  f (x1, x2, … , xN)

    We have a lot of past data, i.e. many instances (examples)      
 of the relation  y  =  ? (x1, …, xN)   between input and output

So why not let the computer find   f  for us ?



  

When to use supervised ML?

y  =  f ( x1, x2, … , xN )

3 necessary and sufficient conditions:

 1)  We have a goal/target, or question   y                                     
   which we want to predict or estimate

 2)  We have lots of data including y 's  and related X i 's:           
        i.e:  tons of past examples  y  =  f (x1, … , xN)

 3)  We have no obvious algorithm  f linking y to (x1, …, xN)



  

Enter the vowpal wabbit

 Fast, highly scalable, flexible, online learner
 Open source and Free (BSD License)
 Originally by John Langford
 Yahoo! & Microsoft research

Vorpal (adj):  deadly
(Invented by Lewis Carroll to describe a sword)

Rabbit (noun): mammal associated with speed



  

vowpal wabbit
 Written in C/C++
 Linux, Mac OS-X, Windows
 Both a library & command-line utility
 Source & documentation on github + wiki
 Growing community of developers & users



  

What can vw do?

Solve several problem types
(many via reductions):
        - Linear regression

        - Classification (+ multi-class)                                          
          [using multiple reductions/strategies]

        - Matrix factorization (SVD like)

        - LDA (Latent Dirichlet Allocation)

        - More ...



  

vowpal wabbit

Supported optimization strategies                      
(method used to find the gradient/direction      
towards the optimum/minimum error):

        - Stochastic Gradient Descent (SGD)

        - BFGS

        - Conjugate Gradient



  

vowpal wabbit

During learning,
which error are we trying to optimize-for (minimize)?

VW supports multiple loss (error) functions:

        - squared

        - quantile

        - logistic

        - hinge



  

vowpal wabbit

Core algorithm (in inner loop):
    - Supervised machine learning

    - Online stochastic gradient descent

    - With a 3-way iterative update:
                 --adaptive

                 --invariant

                 --normalized



  

Gradient Descent in a nutshell



  

Gradient Descent in a nutshell

from 1D (line) to 2D (plane)
 find bottom (minimum) of valley:

We don't see
the whole picture,
only a local one.

Sensible direction
is along

steepest gradient



  

Gradient Descent:  challenges & issues

Local vs global optimum
 Non normalized steps

 Step too big / overshoot 



  

Gradient Descent:  challenges & issues
  Saddles
  Unscaled & non-continuous dimensions
  Much higher dimensions than 2D



  

What sets vw apart?

SGD on steroids:
 invariant
 adaptive
 normalized



  

SGD on steroids
Auto-adaptive to feature scale, importance & rarity:
 No need to pre-normalize feature value ranges
 Takes care of unimportant vs important features
 Adaptive & separate per feature learning rates

feature = one dimension of input

What sets vw apart?



  

What sets vw apart?

Speed and scalability:
 Unlimited data-size (online learning)
 ~5M features/second on my desktop
 Oct 2011 learning speed record:                           
    10 12 (tera) features in 1h on 1k node cluster



  

What sets vw apart?

The “hash trick”:
  Feature names are hashed fast (murmur hash 32)
  Hash result is index into weight-vector
  No hash-map table is maintained internally
  No attempt to deal with hash-collisions

num:6.3  color=red  age<7y



  

What sets vw apart?

Very flexible input format:
  Accepts sparse data-sets, missing data
  Can mix numeric, categorical/boolean features in          
    natural-language like manner (via the hash trick):

size:6.3  color=turquoise  age<7y  is_cool



  

What sets vw apart?

Name spaces in data-sets:
  Designed to allow feature-crossing
  Useful in recommender systems
  e.g. used in matrix factorization
  Self documenting:

1 |user age:14  state=CA … |item books         price:12.5 …
0 |user age:37  state=OR … |item electronics price:59 …

Crossing users with items:
      $ vw -q ui did_user_buy_item.train



  

What sets vw apart?

Over-fit resistant:
  On-line learning: learns as it goes

– - Compute y from x i …  based on current weigths
– - Compare with actual (example) y
– - Compute error
– - Update model (per feature weights)
– Advance to next example & repeat...

  New data is always “out of sample”                            
    (exception: multiple passes)



  

What sets vw apart?

Over-fit resistant (cont.):

 Data is always “out of sample”  …
 So model error estimate is realistic (test like)
 Model is linear (simple) – hard to overfit
 No need to train vs test or K-fold cross-validate



  

Biggest weakness

Learns simple models
 Can be partially mitigated by:

        - Quadratic / cubic (-q / --cubic   options)
          to automatically cross features on-the-fly

        - Single hidden layer neural-net –nn <N>
        - Early feature transform (ala GAM)



  

  

        
Demo

(How to separate a signal from surrounding noise)



  

  

        

Demo

Step 1:

Generate a random train-set:    Y = a + 2b - 5c + 7

        $ random-poly  -n 50000   a + 2b - 5c + 7  >  r.train



  

  

        

Demo

Random train-set:    Y = a + 2b - 5c + 7

        $ random-poly  -n 50000   a + 2b - 5c + 7  >  r.train

Quiz:
    Assume random values for (a, b, c) are in the range [0 , 1)
          What's the min and max of the expression?
          What's the distribution of the expression?



  

  

        

getting familiar with our data-set

Random train-set:    Y = a + 2b - 5c + 7

          Min and max of Y:  (2, 10)
          Density distribution of Y (related to, but not Irwin-Hall):

a + 2b – 5c + 7
{a, b, c}  ∊  [0,  1)



  

  

        

Demo

Step 2:

Learn from the data & build a model:

       $ vw  -l 5  r.train  -f  r.model

Quiz: how long should it take to learn from
          (50,000 x 4) (examples x features)?



  

  Demo

Step 2:

       $ vw  -l 5   r.train  -f  r.model

Q: how long should it take to learn from
     (50,000 x 4) (examples x features)?

A: about 1 /10th (0.1) of a second on
my little low-end notebook



  

  Demo
Step 2 (training-output / convergence)

$ vw  -l 5  r.train  -f  r.model



  

  

        

Demo

error convergence towards zero w/ 2 learning rates:
        $  vw  r.train
      $  vw  r.train  -l 10



  

  

        

vw error convergence w/ 2 learning rates



  

  

        

vw error convergence w/ 2 learning rates

Caveat: don't overdo learning rate
It may start strong and end-up weak
(leaving default alone is a good idea)



  

  Demo
(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights):
$ vw-varinfo  -l 5  -f  r.model   r.train



  

  Demo
(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights):
$ vw-varinfo  -l 5  -f  r.model   r.train

Perfect weights for {a, b, c} & the hidden constant



  

  Q: how good is our model?

Steps  3, 4, 5, 6:

 Create independent random data-set                                
   for same expression:  Y = a + 2b - 5c + 7

 Drop the Y output column (labels)                                     
   Leave only input columns (a, b, c) 

 Run vw:  load the model + predict

 Compare Y   predictions                                                     
              to Y   actual values

        



  

  test-set Ys (labels) density

        



  

  predicted vs. actual (top few)

                 predicted       actual        



  

  Q: how good is our model?

        

Q.E.D



  

  Demo – part 2: adding noise

Unfortunately, real life is never so perfect

so let's repeat the whole exercise
with a distortion:

Add “global” noise to each train-set result (Y)
& make it “wrong” by up to [-1 , +1]

$ random-poly -n 50000 -p6  -r -1,1  a + 2b - 5c + 7  > r.train

        



  

  NOISY train-set Ys (labels) density

range falls outside [2 ,10]
due to randomly added [-1 , +1]

        

random [-1 , +1] added to Ys



  

  Original Ys vs NOISY train-set Ys (labels)

train-set Ys range falls outside [2 ,10]
due to randomly added [-1 ,1]

        

random [-1 , +1] added to Ys

OK wabbit,
lessee how
you wearn fwom this!



  

  NOISY train-set – model weights

no fooling bunny
model built from global noisy data

has still near perfect weights {a, 2b, -5c, 7}

        



  

  global-noise predicted vs. actual (top few)

                 predicted       actual        



  

  predicted vs test-set actual w/ NOISY train-set

surprisingly good
because noise is unbiased/symmetric

        

bunny rulez! 



  

  Demo – part 3: more noise

Let's repeat the whole exercise
with a more realistic (real-life) distortion:

Add noise to each train-set variable separately
& make it “wrong” by up to +/- 50% of its magnitude:

$ random-poly -n 50000 -p6 -R -0.5,0.5 a + 2b - 5c + 7  > r.train

        



  

  all-var NOISY train-set Ys (labels) density

range falls outside [2 ,10] + skewed density
due to randomly added [+/- 50% per variable]

        



  

  expected vs per-var NOISY train-set Ys (labels)

Nice mess: skewed, tri-modal, X shaped
due to randomly added +/- 50% per var

        

Hey bunny,
lessee you
leawn fwom this!



  

  expected vs per-var NOISY train-set Ys (labels)

Nice mess: skewed, tri-modal, X shaped
due to randomly added +/- 50% per var

        

Hey bunny,
lessee you
leawn fwom this!

a
+2b

-5c



  

  per-var NOISY train-set – model weights

model built from this noisy data
is still remarkably close to the perfect

{a, 2b, -5c, 7} weights

        



  

  per-var noise predicted vs. actual (top few)

                 predicted       actual        



  

  predicted vs test-set actual w/ per-var NOISY train-set

remarkably good
because even per-var noise is unbiased/symmetric

        

Bugs p0wns Elmer again



  

  there's so much more in vowpal wabbit

 Classification
 Reductions

 Regularization
 Many more run time options
Cluster mode / all-reduce…

The wiki on github is a great start

“Ve idach zil gmor” (Hillel the Elder)

  “As for the west - go leawn” (Elmer's translation)
 

remarkably good
because even per-var noise is unbiased/symmetric

        



  

  

        
Questions?
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