Vowpal Wabbit (fast & scalable machine-learning) ariel faigon

What is Machine Learning?

In a nutshell:

- The process of a computer (self) learning from data

Two types of learning:

- **Supervised:** learning from labeled (answered) examples
- Unsupervised: no labels, e.g. clustering, segmentation

y = f(x1, x2, ..., xN)

y:output/result we're interested inX1, ..., xN:inputs we know/have

y = f(x1, x2, ..., xN)

Classic/traditional computer science:

- We have: x1, ..., xN (the input)
- We want: y (the output)

We spend a lot of time and effort thinking and coding **f** We call **f** "the algorithm"

y = f(x1, x2, ..., xN)

In more modern / Al-ish computer science:

- We have: x1, ... , xN
- We have: y

We have a **lot** of past data, i.e. many instances (examples) of the relation $y = f(x_1, ..., x_N)$ between input and output

y = f(x1, x2, ..., xN)

We have a **lot** of past data, i.e. many instances (examples) of the relation y = ?(x1, ..., xN) between input and output

So why not let the computer find f for us?

When to use supervised ML?

y = f(x1, x2, ..., xN)

3 necessary and sufficient conditions:

- 1) We have a goal/target, or question y which we want to predict or estimate
- 2) We have lots of data including y 's and related X_i 's: i.e: tons of past examples $y = f(x_1, ..., x_N)$

3) We have no obvious algorithm **f** linking **y** to (x1, ..., xN)

Enter the vowpal wabbit

- Fast, highly scalable, flexible, online learner
- Open source and Free (BSD License)
- Originally by John Langford
- Yahoo! & Microsoft research

Vorpal (adj): deadly (Invented by Lewis Carroll to describe a sword)

Rabbit (noun): mammal associated with speed

- Written in C/C++
- Linux, Mac OS-X, Windows
- Both a library & command-line utility
- Source & documentation on github + wiki
- Growing community of developers & users

What can vw do?

Solve several problem types (many via reductions):

- Linear regression
- Classification (+ multi-class) [using multiple reductions/strategies]
- Matrix factorization (SVD like)
- LDA (Latent Dirichlet Allocation)
- More ...

Supported optimization strategies (method used to find the gradient/direction towards the optimum/minimum error):

- Stochastic Gradient Descent (SGD)
- BFGS

- Conjugate Gradient

During learning, which error are we trying to optimize-for (minimize)? VW supports multiple loss (error) functions:

- squared
- quantile
- logistic
- hinge

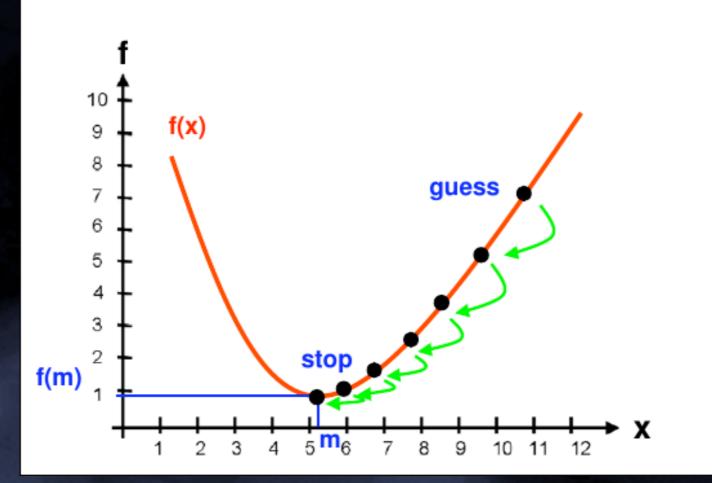
Core algorithm (in inner loop):

- Supervised machine learning
- Online stochastic gradient descent
- With a 3-way iterative update:

--adaptive --invariant --normalized

Gradient Descent in a nutshell

Gradient descent (illustration)

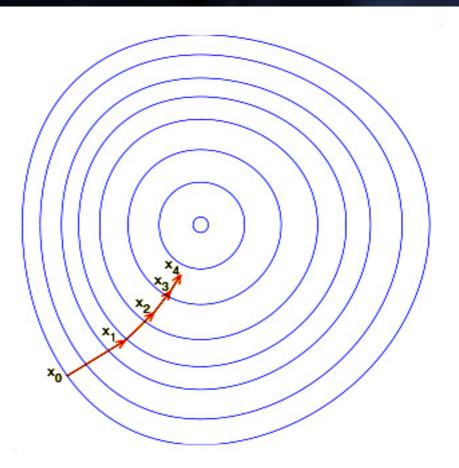


Gradient Descent in a nutshell

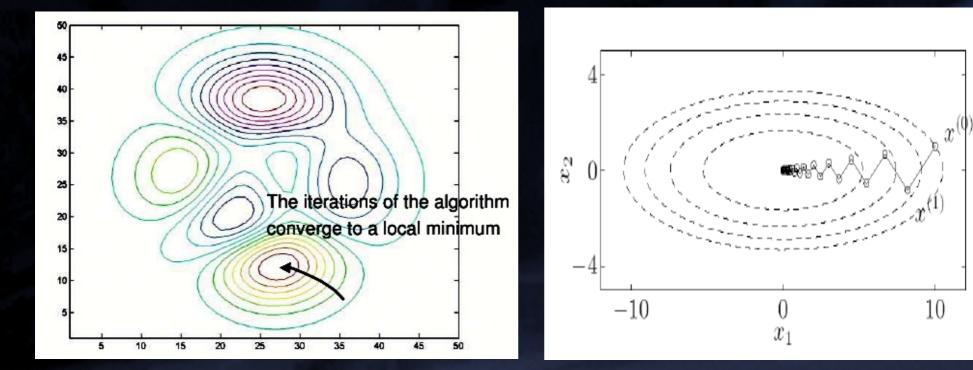
from 1D (line) to 2D (plane) find bottom (minimum) of valley:

We don't see the whole picture, only a local one.

Sensible direction is along steepest gradient



Gradient Descent: challenges & issues

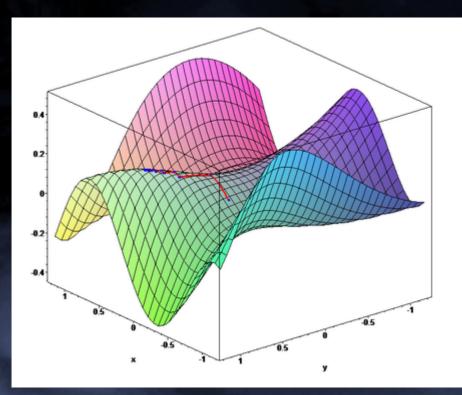


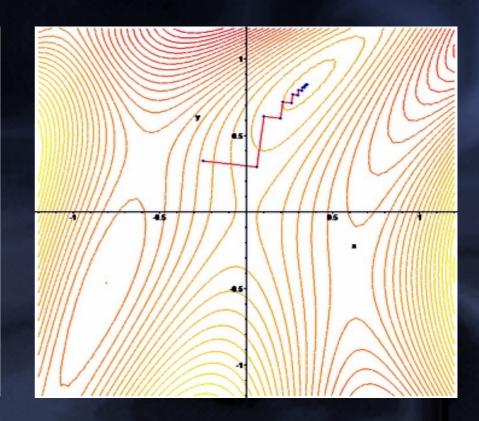
Local vs global optimum

Non normalized steps Step too big / overshoot

Gradient Descent: challenges & issues

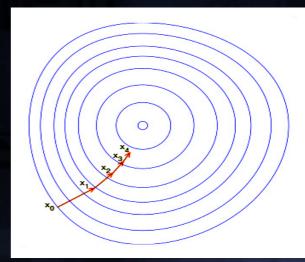
- Saddles
- Unscaled & non-continuous dimensions
- Much higher dimensions than 2D





SGD on steroids:

- invariant
- adaptive
- normalized



SGD on steroids

Auto-adaptive to feature scale, importance & rarity:

- No need to pre-normalize feature value ranges
- Takes care of unimportant vs important features
- Adaptive & separate per feature learning rates

feature = one dimension of input

Speed and scalability:

- Unlimited data-size (online learning)
- ~5M features/second on my desktop
- Oct 2011 learning speed record:
 10¹² (tera) features in 1h on 1k node cluster

The "hash trick": num:6.3 color=red age<7y

- Feature names are hashed fast (murmur hash 32)
- Hash result is index into weight-vector
- No hash-map table is maintained internally
- No attempt to deal with hash-collisions

Very flexible input format:

- Accepts sparse data-sets, missing data
- Can mix numeric, categorical/boolean features in natural-language like manner (via the hash trick): size:6.3 color=turquoise age<7y is_cool

Name spaces in data-sets:

- Designed to allow feature-crossing
- Useful in recommender systems
- e.g. used in matrix factorization
- Self documenting:

1 |user age:14state=CA ... |item booksprice:12.5 ...0 |user age:37state=OR ... |item electronics price:59 ...

Crossing users with items: \$ vw -q ui did_user_buy_item.train

Over-fit resistant:

- On-line learning: learns as it goes
 - Compute y from Xi... based on current weigths
 - Compare with actual (example) y
 - Compute error
 - Update model (per feature weights) Advance to next example & repeat...

• New data is always "out of sample" (exception: multiple passes)

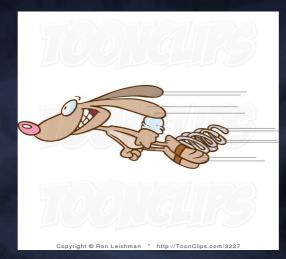
Over-fit resistant (cont.):

- Data is always "out of sample" ...
- So model error estimate is realistic (test like)
- Model is linear (simple) hard to overfit
- No need to train vs test or K-fold cross-validate

Biggest weakness

Learns simple models

- Can be partially mitigated by:
 - Quadratic / cubic (-q / --cubic options) to automatically cross features on-the-fly
 - Single hidden layer neural-net –nn <N>
 - Early feature transform (ala GAM)



Demo

(How to separate a signal from surrounding noise)

Generate a random train-set: Y = a + 2b - 5c + 7 **\$ random-poly -n 50000 a + 2b - 5c + 7 > r.train**

Random train-set: Y = *a* + 2*b* - 5*c* + 7

\$ random-poly -n 50000 a + 2b - 5c + 7 > r.train

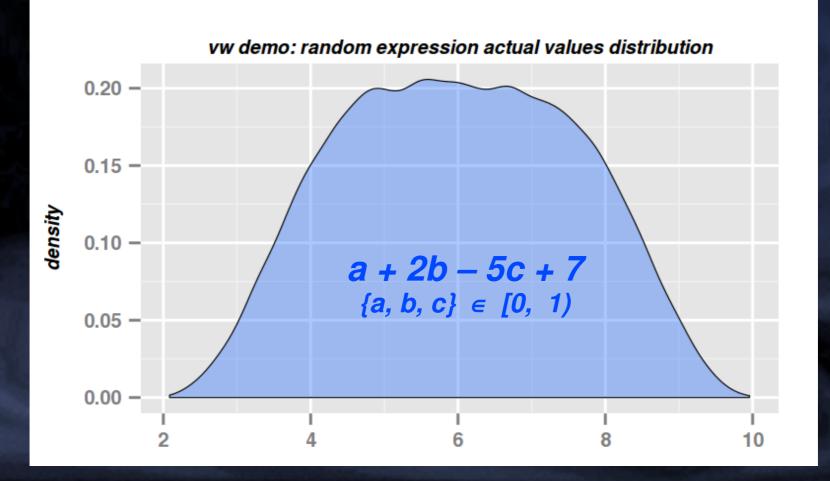
Quiz:

Assume random values for (a, b, c) are in the range [0, 1) What's the min and max of the expression? What's the distribution of the expression?

getting familiar with our data-set

Random train-set: Y = *a* + 2*b* - 5*c* + 7

Min and max of Y: (2, 10) Density distribution of Y (related to, but not Irwin-Hall):



Step 2:

Learn from the data & build a model:

\$vw -15 r.train -f r.model

Quiz: how long should it take to learn from (50,000 x 4) (examples x features)?

Demo

Step 2:

\$vw -15 r.train -f r.model

Q: how long should it take to learn from (50,000 x 4) (examples x features)?

A: about 1 /10th (0.1) of a second on my little low-end notebook

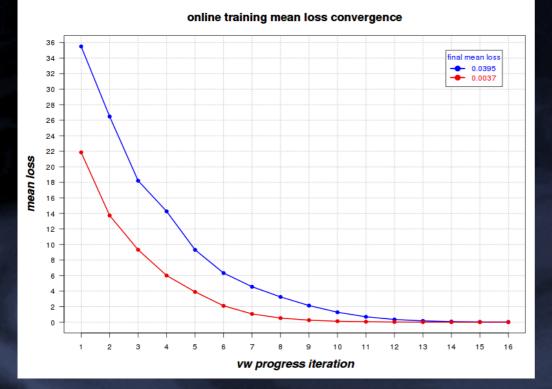
Demo

Step 2 (training-output / convergence) \$ vw -l 5 r.train -f r.model

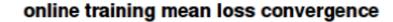
average	since	example	example	current	current	current
loss	last	counter	weight	label	predict	features
22.438119	22.438119	3	3.0	4.0602	4.4325	4
13.288925	4.139732	6	6.0	6.5879	7.9563	4
10.334829	6.789914	11	11.0	4.8486	8.1888	4
6.939150	3.543470	22	22.0	6.0161	6.6145	4
4.358768	1.778385	44	44.0	8.4484	6.7984	4
2.777721	1.159907	87	87.0	6.5252	5.1801	4
1.561782	0.345843	174	174.0	6.4677	6.0781	4
0.797207	0.032632	348	348.0	6.6580	6.5860	4
0.398842	0.000476	696	696.0	5.0679	5.0723	4
0.199421	0.00000	1392	1392.0	8.8758	8.8758	4
0.099711	0.00000	2784	2784.0	7.4089	7.4089	4
0.049855	0.00000	5568	5568.0	8.7209	8.7209	4
0.024930	0.000000	11135	11135.0	9.5274	9.5274	4
0.012465	0.000000	22269	22269.0	7.9403	7.9403	4
0.006233	0.00000	44537	44537.0	3.4829	3.4829	4

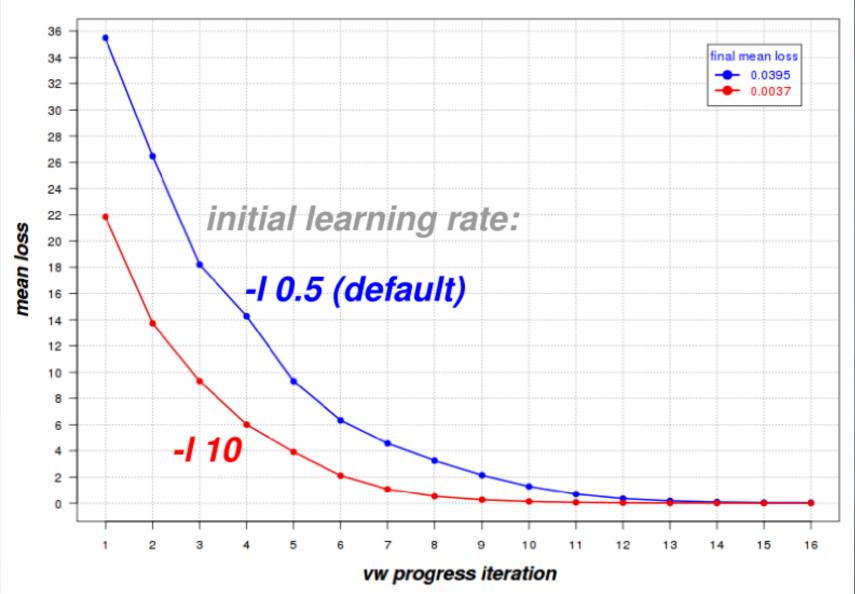
finished run number of examples = 50000 weighted example sum = 50000 weighted label sum = 299829 average loss = 0.00555188 best constant = 5.99657 total feature number = 200000

error convergence towards zero w/ 2 learning rates: \$ vw r.train \$ vw r.train -| 10

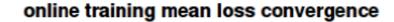


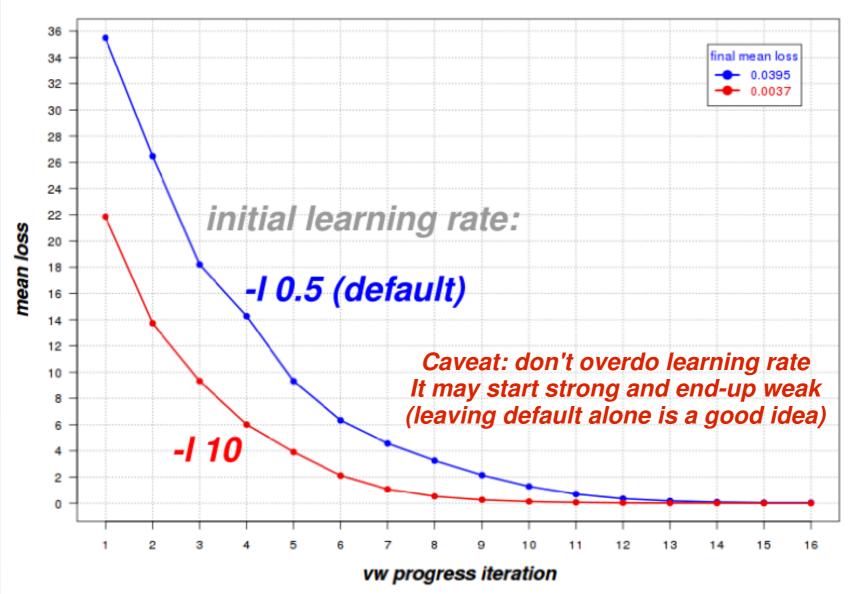
vw error convergence w/ 2 learning rates





vw error convergence w/ 2 learning rates





Demo

(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights): \$ vw-varinfo -l 5 -f r.model r.train

=== 3: Train: look at the model weights					
\$ vw-varinfo -l 5 r.train					
FeatureName	HashVal	MinVal	MaxVal	Weight	RelScore
f^b	146788	0.00	1.00	+2.0000	40.00%
f^a	14355	0.00	1.00	+1.0000	20.00%
Constant	116060	0.00	0.00	+7.0000	0.00%
f^c	253856	0.00	1.00	-5.0000	-100.00%

Demo

(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights): \$ vw-varinfo -l 5 -f r.model r.train

=== 3: Train: look at the model weights					
<u>\$ vw-varinfo</u>) -l 5 r.train				
FeatureName	HashVal	MinVal	MaxVal	/ Weight \	RelScore
f^b	146788	0.00	1.00	+2.0000	40.00%
f^a	14355	0.00	1.00	+1.0000	20.00%
Constant	116060	0.00	0.00	+7.0000	0.00%
f^c	253856	0.00	1.00	-5.0000	-100.00%
f^c	253856	0.00	1.00	-5.0000	-100.00%

Perfect weights for {a, b, c} & the hidden constant

Q: how good is our model?

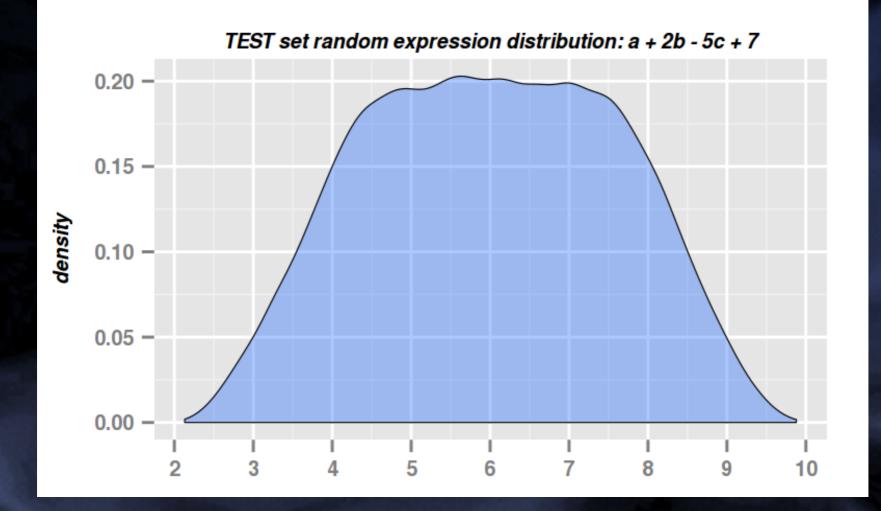
Steps 3, 4, 5, 6:

 Create independent random data-set for same expression: Y = a + 2b - 5c + 7

- Drop the Y output column (labels) Leave only input columns (a, b, c)
- Run vw: load the model + predict

 Compare Y predictions to Y actual values

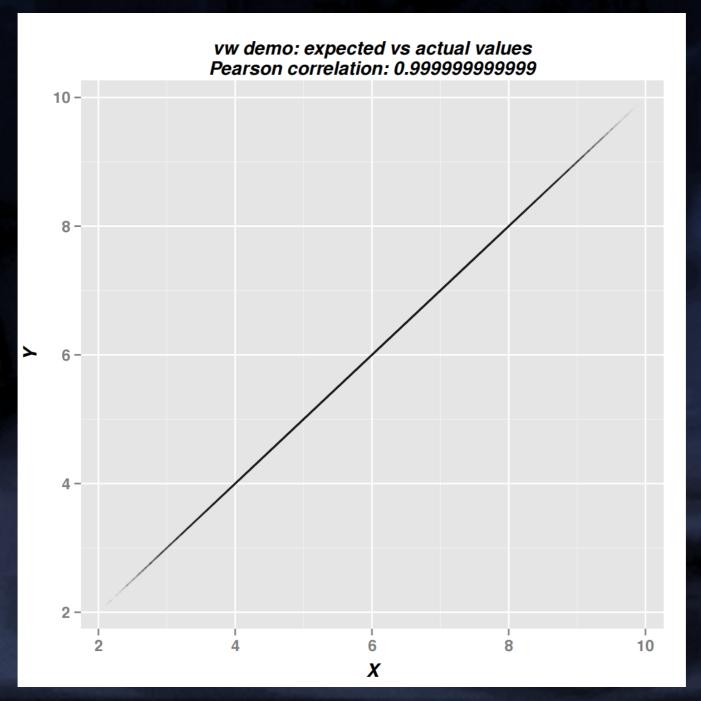
test-set Ys (labels) density



predicted vs. actual (top few)

predicted	actual
8.455564	8.455560
7.594127	7.594125
5.321825	
6.509799	6.509795
7.354873	7.354873
4.561502	4.561500
8.095616	8.095618
6.707353	6.707353
4.268953	4.268952
6.679539	6.679541
4.642760	4.642761
5.364318	5.364319
7.818297	7.818297
6.362800	6.362796
4.910164	4.910164

Q: how good is our model?



Q.E.D

Demo – part 2: adding noise

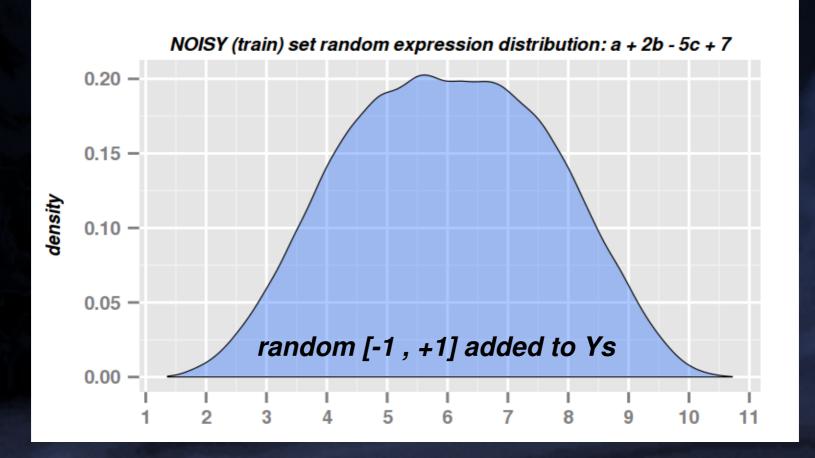
Unfortunately, real life is never so perfect

so let's repeat the whole exercise with a distortion:

Add "global" noise to each train-set result (Y) & make it "wrong" by up to [-1, +1]

\$ random-poly -n 50000 -p6 -r -1,1 a + 2b - 5c + 7 > r.train

NOISY train-set Ys (labels) density



range falls outside [2,10] due to randomly added [-1,+1]

Original Ys vs NOISY train-set Ys (labels)



train-set Ys range falls outside [2,10] due to randomly added [-1,1]

NOISY train-set – model weights

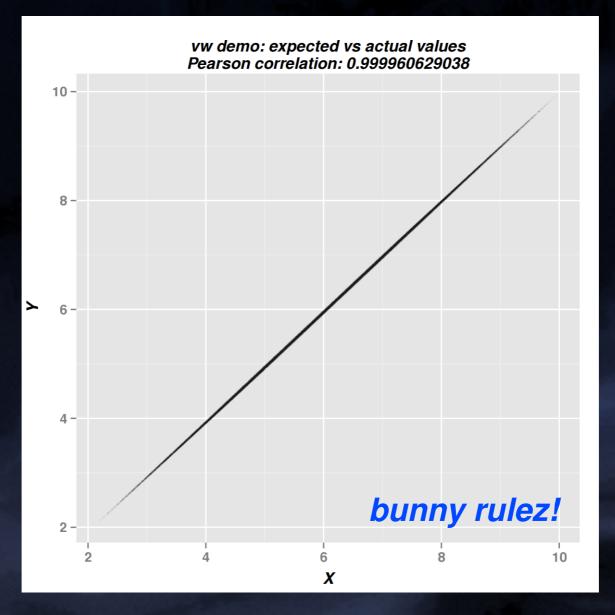
=== 3: Train: look at the model weights					
\$ vw-varinfo -k	r.train				
FeatureName	HashVal	MinVal	MaxVal	/ Weight \	RelScore
f^b	146788	0.00	1.00	+2.0121	40.92%
f^a	14355	0.00	1.00	+1.0105	20.55%
Constant	116060	0.00	0.00	+6.9974	0.00%
f^c	253856	0.00	1.00	-4.9168/	-100.00%

no fooling bunny model built from global noisy data has still near perfect weights {a, 2b, -5c, 7}

global-noise predicted vs. actual (top few)

predicted	actual
7.667181	7.646101
6.384394	6.351331
7.156300	
7.381573	
4.589863	4.490818
4.224433	4.140517
3.965925	3.896666
3.264382	3.179833
5.869455	5.822634
6.504361	6.466419
5.710673	5.632021
8.812504	8.782471
6.927242	6.892944

predicted vs test-set actual w/ NOISY train-set



surprisingly good because noise is unbiased/symmetric

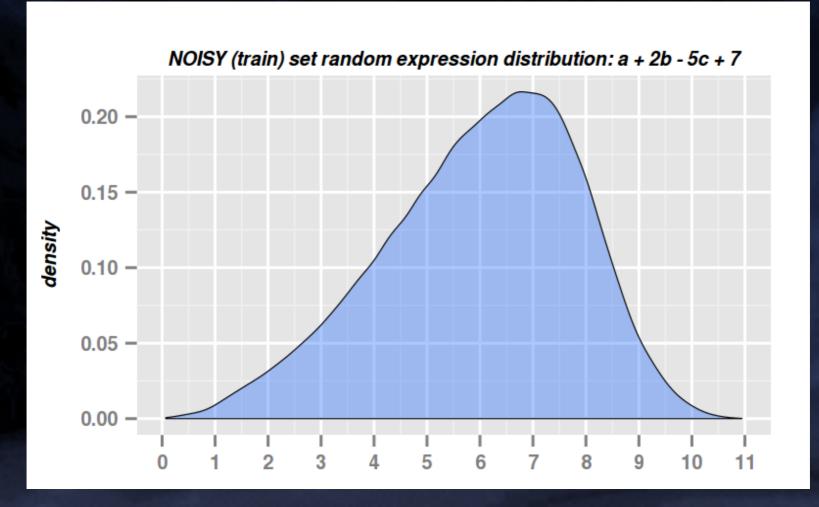
Demo – part 3: more noise

Let's repeat the whole exercise with a more realistic (real-life) distortion:

Add noise to each train-set variable separately & make it "wrong" by up to +/- 50% of its magnitude:

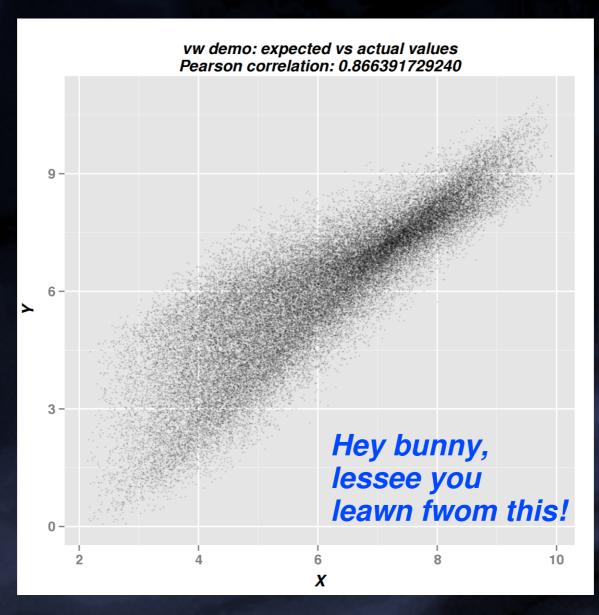
\$ random-poly -n 50000 -p6 -R -0.5,0.5 a + 2b - 5c + 7 > r.train

all-var NOISY train-set Ys (labels) density



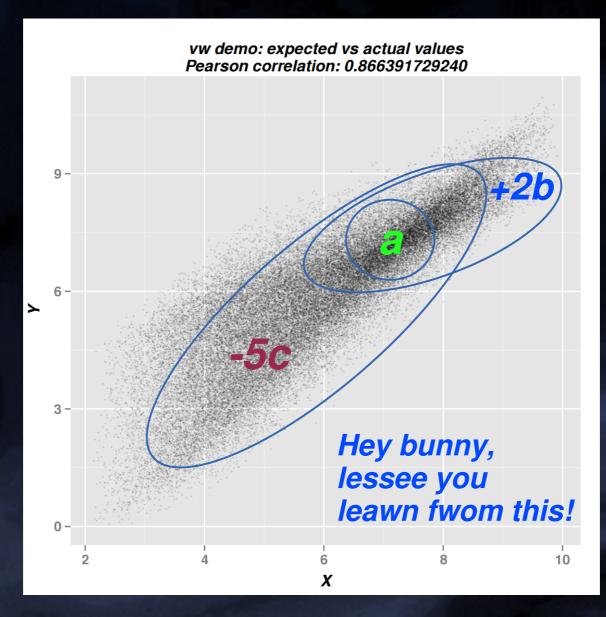
range falls outside [2,10] + skewed density due to randomly added [+/- 50% per variable]

expected vs per-var NOISY train-set Ys (labels)



Nice mess: skewed, tri-modal, X shaped due to randomly added +/- 50% per var

expected vs per-var NOISY train-set Ys (labels)



Nice mess: skewed, tri-modal, X shaped due to randomly added +/- 50% per var

per-var NOISY train-set – model weights

=== 3: Train: look at the model weights (w/ per var noise)					
<pre>\$ vw-varinfo</pre>	r.train				
FeatureName	HashVal	MinVal	MaxVal	/ Weight \	RelScore
f^b	146788	0.00	1.00	+2.0074	40.28%
f^a	14355	0.00	1.00	+1.0929	21.93%
Constant	116060	0.00	0.00	+6.9782	0.00%
f^c	253856	0.00	1.00	-4.9842	-100.00%

model built from this noisy data is still remarkably close to the perfect {a, 2b, -5c, 7} weights

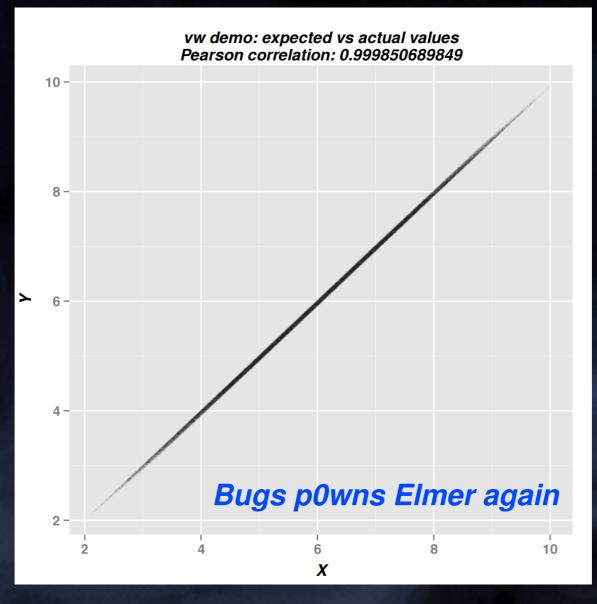
per-var noise predicted vs. actual (top few)

redicted	
4.512985	
8.281034	Ĭ
5.897462	Ĭ
5.736421	Ĭ
3.581511	Ĭ
8.136392	Ī
8.123308	Ī
6.782677	Ī
5.992764	Ī
8.590860	
8.738648	Ī
5.022583	Ī
6.615203	
The second se	

p

actual 4.433761 8.269412 5.891922 5.672354 3.529558 8.104806 8.100060 6.778263 5.953797 8.566768 8.690760 4.954888 6.614312

predicted vs test-set actual w/ per-var NOISY train-set



remarkably good because even per-var noise is unbiased/symmetric

there's so much more in vowpal wabbit

Classification Reductions Regularization Many more run time options Cluster mode / all-reduce...

The wiki on github is a great start

"Ve idach zil gmor" (Hillel the Elder)

"As for the west - go leawn" (Elmer's translation)

Questions?

