

Vowpal Wabbit
(fast & scalable machine-learning)

ariel faigon

“It's how Elmer Fudd would pronounce
 Vorpal Rabbit”

What is Machine Learning?

In a nutshell:
 - The process of a computer (self) learning from data

Two types of learning:
 Supervised: learning from labeled (answered) examples
 Unsupervised: no labels, e.g. clustering, segmentation

Supervised Machine Learning

y = f (x1, x2, … , xN)

 y : output/result we're interested in

 X1, … , xN : inputs we know/have

Supervised Machine Learning

y = f (x1, x2, … , xN)

Classic/traditional computer science:
 We have: x1, … , xN (the input)

 We want: y (the output)

We spend a lot of time and effort thinking and coding f
We call f “the algorithm”

Supervised Machine Learning

y = f (x1, x2, … , xN)

In more modern / AI-ish computer science:
 We have: x1, … , xN
 We have: y

We have a lot of past data, i.e. many instances (examples)
of the relation y = f (x1, …, xN) between input and output

Supervised Machine Learning

y = f (x1, x2, … , xN)

 We have a lot of past data, i.e. many instances (examples)
 of the relation y = ? (x1, …, xN) between input and output

So why not let the computer find f for us ?

When to use supervised ML?

y = f (x1, x2, … , xN)

3 necessary and sufficient conditions:

 1) We have a goal/target, or question y
 which we want to predict or estimate

 2) We have lots of data including y 's and related X i 's:
 i.e: tons of past examples y = f (x1, … , xN)

 3) We have no obvious algorithm f linking y to (x1, …, xN)

Enter the vowpal wabbit

 Fast, highly scalable, flexible, online learner
 Open source and Free (BSD License)
 Originally by John Langford
 Yahoo! & Microsoft research

Vorpal (adj): deadly
(Invented by Lewis Carroll to describe a sword)

Rabbit (noun): mammal associated with speed

vowpal wabbit
 Written in C/C++
 Linux, Mac OS-X, Windows
 Both a library & command-line utility
 Source & documentation on github + wiki
 Growing community of developers & users

What can vw do?

Solve several problem types
(many via reductions):
 - Linear regression

 - Classification (+ multi-class)
 [using multiple reductions/strategies]

 - Matrix factorization (SVD like)

 - LDA (Latent Dirichlet Allocation)

 - More ...

vowpal wabbit

Supported optimization strategies
(method used to find the gradient/direction
towards the optimum/minimum error):

 - Stochastic Gradient Descent (SGD)

 - BFGS

 - Conjugate Gradient

vowpal wabbit

During learning,
which error are we trying to optimize-for (minimize)?

VW supports multiple loss (error) functions:

 - squared

 - quantile

 - logistic

 - hinge

vowpal wabbit

Core algorithm (in inner loop):
 - Supervised machine learning

 - Online stochastic gradient descent

 - With a 3-way iterative update:
 --adaptive

 --invariant

 --normalized

Gradient Descent in a nutshell

Gradient Descent in a nutshell

from 1D (line) to 2D (plane)
 find bottom (minimum) of valley:

We don't see
the whole picture,
only a local one.

Sensible direction
is along

steepest gradient

Gradient Descent: challenges & issues

Local vs global optimum
 Non normalized steps

 Step too big / overshoot

Gradient Descent: challenges & issues
 Saddles
 Unscaled & non-continuous dimensions
 Much higher dimensions than 2D

What sets vw apart?

SGD on steroids:
 invariant
 adaptive
 normalized

SGD on steroids
Auto-adaptive to feature scale, importance & rarity:
 No need to pre-normalize feature value ranges
 Takes care of unimportant vs important features
 Adaptive & separate per feature learning rates

feature = one dimension of input

What sets vw apart?

What sets vw apart?

Speed and scalability:
 Unlimited data-size (online learning)
 ~5M features/second on my desktop
 Oct 2011 learning speed record:
 10 12 (tera) features in 1h on 1k node cluster

What sets vw apart?

The “hash trick”:
 Feature names are hashed fast (murmur hash 32)
 Hash result is index into weight-vector
 No hash-map table is maintained internally
 No attempt to deal with hash-collisions

num:6.3 color=red age<7y

What sets vw apart?

Very flexible input format:
 Accepts sparse data-sets, missing data
 Can mix numeric, categorical/boolean features in
 natural-language like manner (via the hash trick):

size:6.3 color=turquoise age<7y is_cool

What sets vw apart?

Name spaces in data-sets:
 Designed to allow feature-crossing
 Useful in recommender systems
 e.g. used in matrix factorization
 Self documenting:

1 |user age:14 state=CA … |item books price:12.5 …
0 |user age:37 state=OR … |item electronics price:59 …

Crossing users with items:
 $ vw -q ui did_user_buy_item.train

What sets vw apart?

Over-fit resistant:
 On-line learning: learns as it goes

– - Compute y from x i … based on current weigths
– - Compare with actual (example) y
– - Compute error
– - Update model (per feature weights)
– Advance to next example & repeat...

 New data is always “out of sample”
 (exception: multiple passes)

What sets vw apart?

Over-fit resistant (cont.):

 Data is always “out of sample” …
 So model error estimate is realistic (test like)
 Model is linear (simple) – hard to overfit
 No need to train vs test or K-fold cross-validate

Biggest weakness

Learns simple models
 Can be partially mitigated by:

 - Quadratic / cubic (-q / --cubic options)
 to automatically cross features on-the-fly

 - Single hidden layer neural-net –nn <N>
 - Early feature transform (ala GAM)

Demo

(How to separate a signal from surrounding noise)

Demo

Step 1:

Generate a random train-set: Y = a + 2b - 5c + 7

 $ random-poly -n 50000 a + 2b - 5c + 7 > r.train

Demo

Random train-set: Y = a + 2b - 5c + 7

 $ random-poly -n 50000 a + 2b - 5c + 7 > r.train

Quiz:
 Assume random values for (a, b, c) are in the range [0 , 1)
 What's the min and max of the expression?
 What's the distribution of the expression?

getting familiar with our data-set

Random train-set: Y = a + 2b - 5c + 7

 Min and max of Y: (2, 10)
 Density distribution of Y (related to, but not Irwin-Hall):

a + 2b – 5c + 7
{a, b, c} ∊ [0, 1)

Demo

Step 2:

Learn from the data & build a model:

 $ vw -l 5 r.train -f r.model

Quiz: how long should it take to learn from
 (50,000 x 4) (examples x features)?

 Demo

Step 2:

 $ vw -l 5 r.train -f r.model

Q: how long should it take to learn from
 (50,000 x 4) (examples x features)?

A: about 1 /10th (0.1) of a second on
my little low-end notebook

 Demo
Step 2 (training-output / convergence)

$ vw -l 5 r.train -f r.model

Demo

error convergence towards zero w/ 2 learning rates:
 $ vw r.train
 $ vw r.train -l 10

vw error convergence w/ 2 learning rates

vw error convergence w/ 2 learning rates

Caveat: don't overdo learning rate
It may start strong and end-up weak
(leaving default alone is a good idea)

 Demo
(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights):
$ vw-varinfo -l 5 -f r.model r.train

 Demo
(separate a signal from surrounding noise)

Step 2 (looking at the trained model weights):
$ vw-varinfo -l 5 -f r.model r.train

Perfect weights for {a, b, c} & the hidden constant

 Q: how good is our model?

Steps 3, 4, 5, 6:

 Create independent random data-set
 for same expression: Y = a + 2b - 5c + 7

 Drop the Y output column (labels)
 Leave only input columns (a, b, c)

 Run vw: load the model + predict

 Compare Y predictions
 to Y actual values

 test-set Ys (labels) density

 predicted vs. actual (top few)

 predicted actual

 Q: how good is our model?

Q.E.D

 Demo – part 2: adding noise

Unfortunately, real life is never so perfect

so let's repeat the whole exercise
with a distortion:

Add “global” noise to each train-set result (Y)
& make it “wrong” by up to [-1 , +1]

$ random-poly -n 50000 -p6 -r -1,1 a + 2b - 5c + 7 > r.train

 NOISY train-set Ys (labels) density

range falls outside [2 ,10]
due to randomly added [-1 , +1]

random [-1 , +1] added to Ys

 Original Ys vs NOISY train-set Ys (labels)

train-set Ys range falls outside [2 ,10]
due to randomly added [-1 ,1]

random [-1 , +1] added to Ys

OK wabbit,
lessee how
you wearn fwom this!

 NOISY train-set – model weights

no fooling bunny
model built from global noisy data

has still near perfect weights {a, 2b, -5c, 7}

 global-noise predicted vs. actual (top few)

 predicted actual

 predicted vs test-set actual w/ NOISY train-set

surprisingly good
because noise is unbiased/symmetric

bunny rulez!

 Demo – part 3: more noise

Let's repeat the whole exercise
with a more realistic (real-life) distortion:

Add noise to each train-set variable separately
& make it “wrong” by up to +/- 50% of its magnitude:

$ random-poly -n 50000 -p6 -R -0.5,0.5 a + 2b - 5c + 7 > r.train

 all-var NOISY train-set Ys (labels) density

range falls outside [2 ,10] + skewed density
due to randomly added [+/- 50% per variable]

 expected vs per-var NOISY train-set Ys (labels)

Nice mess: skewed, tri-modal, X shaped
due to randomly added +/- 50% per var

Hey bunny,
lessee you
leawn fwom this!

 expected vs per-var NOISY train-set Ys (labels)

Nice mess: skewed, tri-modal, X shaped
due to randomly added +/- 50% per var

Hey bunny,
lessee you
leawn fwom this!

a
+2b

-5c

 per-var NOISY train-set – model weights

model built from this noisy data
is still remarkably close to the perfect

{a, 2b, -5c, 7} weights

 per-var noise predicted vs. actual (top few)

 predicted actual

 predicted vs test-set actual w/ per-var NOISY train-set

remarkably good
because even per-var noise is unbiased/symmetric

Bugs p0wns Elmer again

 there's so much more in vowpal wabbit

 Classification
 Reductions

 Regularization
 Many more run time options
Cluster mode / all-reduce…

The wiki on github is a great start

“Ve idach zil gmor” (Hillel the Elder)

 “As for the west - go leawn” (Elmer's translation)

remarkably good
because even per-var noise is unbiased/symmetric

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

